A Modified Weighted Symmetric Estimator for a Gaussian First-Order Autoregressive Model with Additive Outliers

نویسنده

  • Wararit PANICHKITKOSOLKUL
چکیده

Guttman and Tiao [1], and Chang [2] showed that the effect of outliers may cause serious bias in estimating autocorrelations, partial correlations, and autoregressive moving average parameters (cited in Chang et al. [3]). This paper presents a modified weighted symmetric estimator for a Gaussian first-order autoregressive AR(1) model with additive outliers. We apply the recursive median adjustment based on an exponentially weighted moving average (EWMA) to the weighted symmetric estimator of Park and Fuller [4]. We consider the following estimators: the weighted symmetric estimator ( ρ̂W ), the recursive mean adjusted weighted symmetric estimator ( ρ̂RW ) proposed by Niwitpong [5], the recursive median adjusted weighted symmetric estimator ( ρ̂RDW ) proposed by Panichkitkosolkul [6], and the weighted symmetric estimator using adjusted recursive median based on EWMA ( ρ̂ − RD EWMA ). Using Monte Carlo simulations, we compare the mean square error (MSE) of estimators. Simulation results have shown that the proposed estimator, ρ̂ − RD EWMA , provides a MSE lower than those of ρ̂W , ρ̂RW and ρ̂RDW for almost all situations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Estimation in Seasonal Long-memory Processes with Additive Outliers

In this paper, we introduce an alternative semiparametric estimator of the fractionally differencing parameter in Gaussian SARFIMA processes which is robust against additive outliers. The proposed estimator is a variant of the estimators proposed by Reisen, Rodrigues & Palma(2006a, 2006b) and Fajardo, Reisen & Cribari-Neto (2008). We show the robustness of our estimator both analytically and th...

متن کامل

Identification of outliers types in multivariate time series using genetic algorithm

Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...

متن کامل

Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals

When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...

متن کامل

Effect of Preliminary Unit Root Tests on Prediction Intervals for Gaussian Autoregressive Processes with Additive Outliers

The preliminary unit root test has been found to be a useful tool for improving the accuracy of a one-step-ahead predictor and prediction interval for the first-order autoregressive process when an autoregressive coefficient is close to one. This paper applies the aforementioned concepts of the preliminary unit root test in order to improve the efficiency of prediction intervals for the Gaussia...

متن کامل

Median-based estimation of dynamic panel models with fixed effects

We propose outlier-robust estimators for linear dynamic fixed effects panel data models where the number of observations,N , is large and the number of time periods, T , is small. In the simple setting of estimating the AR(1) coefficient from stationary Gaussian panel data, the estimator is (a linear transformation of) the median ratio of adjacent first-differenced data pairs. Its influence fun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012